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This paper deals with independent particles diffusing on a line with traps 
at random positions. It is shown how the long-time decay of the survival 
probability is exhanced when particles do not necessarily disappear upon 
hitting a trap. The results are compared with predictions for a model where 
particles are either absorbed or reflected by traps. 
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1. I N T R O D U C T I O N  

Diffusion models, where independent particles may be absorbed by traps 
located at arbitrary positions, have been studied for many purposes. They 
may describe excitons in solids or interstitial hydrogen atoms in metals, as 
well as the diffusion-controlled reaction A + B---, B, where B is immobile. 

Most studies have been done on infinite media with perfect traps. 
Perfect means that every diffusing particle will be absorbed when hitting a 
trap. Of  particular interest is the behavior of the survival probabili ty ~u(t) 
for long times. In a d-dimensional medium it has a stretched exponential 
decay, ~ P ( t ) ~ e x p ( - a t a / ( a + 2 ) ) ,  for very long times. Particles vanish more 
slowly than exponentially because of the occurrence of arbitrarily large 
regions without traps, where they can survive for a long time. The stretched 
exponential decay was first derived by Balagurov and Vaks, (~) using a 
result of Lifshitz (2) on exponential band tails in the density of states in 
linear random problems. A strict mathematical  proof  was given by 
Donsker  and Varadhan (3) and the subject was recently reviewed by Haus 
and Kehr. (4) 
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Corrections to the above asymptotic result are important for practical 
applications. The general behavior is 

~g(t) ~ exp( - at a/(a+ 2) - -  bt (a-  1)~ca+ z) _ ct(a 2)/(a+ 2) + ... ) 

It is seen that in one dimension, subdominant corrections show up as an 
overall prefactor. The exact asymptotic behavior for 7t(t) in d =  1 was 
derived by Anlauf, (5~ who also calculated a number of correction terms. In 
three dimensions, the subleading terms have been resummed by field- 
theoretic methods in the limit of small concentration e of traps at times 
scaled with c. (6) It was found that the onset of stretched exponential decay 
occurs when only very few particles have survived. 

The problem of imperfect traps, where particles may hit a trap but 
escape from it at the next time step, has been studied less intensively. Even 
in one dimension it cannot be solved exactly. However, the results of ref. 6 
also apply to the case of imperfect trapping in three dimensions. In the 
present paper we shall study the one-dimensional situation with imperfect 
traps. We shall compare our results with a model introduced by Weiss and 
Havlin. (7) Here particles are either absorbed by traps or reflected. Hence, 
they never pass the two adjacent traps and, as for the case of perfect 
trapping, the problem is solvable exactly. 

The setup of the paper is as follows. In Section 2 we define the model 
and point out the role of the density of states. In Section 3 we study the 
long-time behavior of the return and survival probabilities. In Section 4 we 
study the prefactor of this behavior for the case of identical, imperfect 
traps. In Section 5 we redo calculations of Weiss and Havlin; (v) in 
their model, particles will be trapped or reflected. Section 6 closes with a 
summary. 

2. DEF IN IT ION OF THE M O D E L  A N D  THE ROLE OF 
THE DENSITY  OF STATES 

We consider diffusion on a chain described by a symmetrical nearest- 
neighbor random walk. Trapping at site r is described by a probability wr 
with which the particle disappears before the next time step. For  wr = 0 
there is no trap at site r, for wr = 1 the trap is perfect, and for 0 < Wr < 1 

it is imperfect. For  each site r the value of wr is drawn from a distribution 
which is independent of r and not correlated to different sites. The traps are 
quenched, i.e., the wr do not vary in time. 

For  discrete-time dynamics the system obeys the master equation 

p(r,  t + ~) -- �89 - w r ) [ p ( r  + 1, t) + p ( r  - 1, t)]  (1) 
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where p(r, t) is the probability that a particle is at site r at time t, and both 
hopping and trapping occur at half-integer time steps. The continuous 
version of (1) is obtained by setting 

Or"C 
w r  - ( 2 )  

1 + v ~  

and expanding to first order in r 

1 
l ~ ( r , t ) = ~ z [ p ( r + l , t ) + p ( r - l , t ) - 2 p ( r , t ) ] - v r p ( r , t  ) (3) 

where vr = 0 if there is no trap and vr = + oo for a perfect trap. Eigenmodes 
of this equation are defined by 

p(r, t) = b(r)e -E' (4) 

and satisfy 

2(1 - ET + VrZ) b(r) = b(r + 1 ) + b ( r -  1) (5) 

The eigenvalues Ej are determined by the requirement that b(r) can be 
normalized. 

For  obtaining the return and survival probability it is usefull to define 
the average probability of displacement over a distance r in time t, 

P ( r , t ) =  p ( ro+r ,  t lro, O) p(ro, O ) (6) 
r 1 

It involves the conditional probability that a particle starts at site r 0 at 
t = 0 and is at site ro + r at time t. We assume a uniform initial distribution 
p(r, 0) = 1/N, where N is the number of sites in the chain and is taken to 
infinity at an appropriate moment. The brackets in (6) denote the average 
over the distribution of traps. We may study this average, because the 
quantity within the brackets is already self-averaging in the limit N ~  oo. 
The return probability R(t)  is obviously 

R(t) -- p(0, t) (7) 

The survival probability T(t)  is given by a sum over all sites 

~'(t) = ~ p(r, t) (8) 
r 

It is convenient to introduce the Fourier-Laplace transform of (6) 

f'(q, s) = dt e - ~ ' ~  eiqrp(r, t) (9) 
r 
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The formal solution of the equation of motion (3) for the conditional 
probability is 

p(ro + r, t lro, O) = (e t(v + ~/z~))r + ro,ro (10) 

where we defined matrices 

Vr, r,=fr, r, Vr and (I)r ,r , -~2(~r,r , - -6r ,  r , + l - - ( ~ r , r , _  1 (11) 

This can be inserted in (6) and integrated over t. It follows that/5(q, s) is 
a Green's function 

fi(q,s)= lira l r~.~oe'q~ ( 1 ) 
u ~ o ~ N  S +  V + ( 1 / 2 z ) ~  r+ro ro 

1 
=- ( S  q- V q-(l/2z)q~)q,q (12) 

where 

Sr, r,=~)r,r,S (13) 

Since the distribution of disorder is independent of r, the average Green's 
function is translationally invariant in the thermodynamic limit N ~  ~ .  
Hence it is diagonal in Fourier space. 

The function/5 has a cut along the negative real axis 

Im/5(q, - E _ +  i0) = -T- zcp(q, E) (14) 

where p(q, E) is the density of states at wavenumber q. It can also be 
expressed as a sum over the eigenmodes of (5), 

p(q,E)= lim ~ e'q(r-r')(b(E-Ej)b:(r)b:(r')) 
N ~ ~ 1 7 6  N j = l  r, r'~ 1 

This enables us to invert (9) 

P(r, t) = _~ 

(15) 

e-e'e-iq" p(q, E) dE (16) 

In particular, the survival probability is given by 

7t(t) = e-Etp(O, E) dE (17) 
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where p(0, E) is the density of states at zero wavenumber. The return 
probability is given by 

fo R(t )  = e - e ' p ( E )  dE (18) 

where 

S @ p(E)= -~P(q'E) 

is the tota[ density of states. 

3. L O N G - T I M E  B E H A V I O R  OF T H E  R E T U R N  A N D  
S U R V I V A L  P R O B A B I L I T Y  

From Eqs. (17) and (18) it is clear that the long-time decay of the 
return probability R(t )  and the survival probability gift) is dominated by 
the small-energy singularity in p(E)  and p(0, E). This behavior is known 
for arbitrary dimension from the work of Lifshitz, (2) 

p(q, E) ~ p(E)  ,,~ exp( -ka2E-d /2) ,  2 = - In p (19) 

where p is the probability that a given site contains no trap, and ka is a 
constant. The behavior (19) is called the Lifshitz tail. It has its origin in the 
occurrence of arbitrarily large regions without traps, as marked by the 
factor p = e -~. From (19) and (18) the return probability is found to have 
the leading asymptotic behavior 

R(t )  ~ exp( - aa2 2/(~+ 2)ta/~a+ 2~) (20) 

The precise behavior is determined by the corrections to (19). In the one- 
dimensional situation this can be done in great detail, as was shown in a 
series of papers by Nieuwenhuizen and Luck. (8 10) These authors studied 
harmonic chains with random masses, which are closely related to the 
system discussed here. In particular, a random mass in the harmonic 
system plays the role of a trapping strength in the present diffusion model. 
The equation of motion for a displacement a(r)e T M  in a harmonic chain 
with random masses mr is 

- m,co2a(r) = K[a(r  + 1) + a ( r -  1) - 2a(r)]  (21) 

where K is the force constant. We set co 2 = (2K/m_)(1  + cos e), where m 
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is the smallest value of the masses. Then (21) is equivalent to Eq. (5) under 
the mapping 

b(r) ~ ( - 1 )~ a(r) (22) 

1 - Ez ~ cos e (23) 

( /)2 

Vrr ~ (m~-- m ) 2--K (24) 

This implies connections between the densities p (E )  and p(q, E)  of the 
trapping problem and the spectral densities ph((.O 2) and Ph(q, 092) of the 
harmonic problem 

p(q ,E)=~OOmp~,  zc+q,  oJ-;,, 1 - -  

p ( E ) = ~ c o ; O h  co m -- 

(25) 

where ~, ,  = ( 4 K / m ) 1 / 2  is the maximal frequency in the harmonic system. 
In particular, low energies correspond to high frequencies, and q - 0 in the 
trapping problem corresponds to q ~- rc in the harmonic system. From (24) 
it is seen that if the distribution of trapping rates Vr is independent of 
energy, the distribution of masses in the corresponding harmonic problem 
necessarily depends on frequency. However, for the low-energy results to be 

2 in (24) will suffice. discussed below, the approximation ( . 0 2 ~  O)rn 
There are distributions of masses for which ph(co 2) and Ph(q, 092) have 

been solved exactly. (11'12) In units where K =  m_ = 1 the masses decompose 
a s  

mr = 1 + M x r  (26) 

where the x~ have the density 

v ( x ) = ~ p 6 ( x ) + ( 1 - - p ) e - ~ ,  x>~O 

[0, x < 0  
(27) 

From these exact solutions the Lifshitz tail of ph(CO 2) and Ph(q, fj)2) have 
2 - -  4, been derived in ref. 8. The first result reads, for c~ 2 near (J)m- 

p ~ ( 2 + 2 c o s e ) - ~ ( 1 - P ) 2  +~ P 'v~e2 . . . .  /~ 
2pe3 Z 

n ~  o~ 

x f Z [ l + A ~ l > ~ l n e + A ( , , z ) ~ + O ( e 2 1 n 2 e ) ]  (28) 
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In this expression one needs the solution of the differential equation 

1 - e  x 
f " ( x~  = . . 4 M x ( l _ p e _ X ) f ( x  ) (29) 

with boundary conditions f ( 0 ) =  1, f ( + o e ) = 0 .  It has singularities at 
x = x~ - In p + 2~in, where f behaves as 

f (x~ + 6) : f .  + ~o~ 6 In 6 + ~n 6 + 0(62 In 2 6) (30) 

It follows that ~o,, = - ( 1 - p ) f ~ / ( 4 M p x , ) ,  whereas f~ and ~ ,  can only be 
determined numerically. Further, 

A(1 ) = 2%, 

(31) 

A~2): ~f]l_ x. +2f . (~0 .+~ , . ) - -2 / .~0n0n~+~)  

where 7e denotes Euler's constant. Equation (28) shows that the leading 
Lifshitz tail p~/~ is multiplied by a power and a periodic function, such that 
the integral 

2 

H~(co 2 ) : -[%" p(x) dx 
J~ o 2 

behaves as p~/~ times a periodic amplitude. The very same result was 
derived in ref. 9 by more physical considerations. In the latter paper the 
leading behavior of (28) was derived for arbitrary mass distributions. It 
was shown that the fn in general result from a periodic amplitude in the 
Dyson-Schmidt function. (13) For  the distribution (26)-(27) the problem 
can be reduced to the solution of (29). In Section 4 we calculatefo for the 
binary disorder. 

The Lifshitz tail in the function Ph(q, co2) was calculated in ref. 8. We 
have checked the lengthy derivation. 3 In the present paper we are 
interested in low-energy and long-wavelength behavior of the trapping 
problem. For  the harmonic system there exists a scaling behavior near 
q =  ~ and e) 2 =co ,~ -4 .  (*) Via the connections (25), this implies a scaling 
behavior near q = 0 and E =  0 in the trapping problem: 

p(Q(ZEz)  ~/2, E ) = p ( E ) . S ( Q )  (E--*O, Q fixed) (32) 

3 We find a discrepancy in the constituent Q~,~ of p(q, co2): the terms linear i n f ,  in Eq. (3.29c) 
must have an additional factor ( - 1 ) .  Further, we find that also the first two terms multi- 
plying f '  in Eq, (3.22) should have a minus sign. 
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with scaling function 

normalized to 

4 1 + cos 7tQ 
S(Q) = rc(2Er)~/2 (1 - Q2)2 (33) 

f~ -~- S(Q) = 1 

With the above results we can calculate the long-time behavior of the 
quantities discussed in the previous section. From (18), (25), and (28), one 
gets by saddle point methods in the limit of long times the asymptotic 
behavior. The return and survival probability behave roughly as 

exp[--3(re In l/p) 2/3 (t/z) 1/3] 

which confirms the prediction (20) for our case and includes the constants. 
This behavior involves a further power law and a numerical prefactor, 
depending on the concentration c = 1 - p .  We also derive the first correc- 
tion terms. The full result reads 

(1 ~p)2 
zx/1/2 e + + 24 J x  R(t) =fo2 PIn  lip 

+ A ~01) n2 In n2 (2" n2 ] 
- -  + A o ~ - -  + O ( x  2 ln: x) (34) 

x x x 

where 

X= (7C2 )2/3 ~ )  t \  2 = - - l n p  (35) 

and A~ 1'2) have been defined in (31). It is to be noted that terms with n # 0 
in (28) give exponentially small corrections to (34), because for these terms 
the saddle point value has a larger real part. 

Similarly, the survival probability has the asymptotic behavior 

~t(t)=f~(1--p)28{2x3)l/2e-3X/2[plnZ p ; \-~-j  1+ (17,1_8 -t- ~ )  x(rc2)z' 1 

+ A~~ TZ21nTZ--2-2+ A~~ lt2+ O(x x x x 2 ln2 x)]  (36) 

This expression can be compared with the result of Anlauf. <5~ He has 
studied the case of perfect traps, which can be solved by enumeration 
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techniques. A closely related model will be studied in Section 5. For perfect 
traps, it holds that f0 = 1, A(o')=A(0Z)=0.(8) Inserting these values in (36), 
we recover the leading behavior derived by Anlauf. For the term within 
brackets in (36) he finds 

and calculates corrections up to the order X - 4  included. The difference in 
the 1Ix coefficient with regard to our result (36) can be traced back to the. 
fact that (36) holds for a continuous-time process. Indeed, Laplace 
inversion brings a factor e -Et for continuous times [cf. Eqs. (17), (18)]. 
For discrete times, on the other hand, there will be a factor 
( 1 - E ) ' ~ - e x p ( - E t )  �9 (1-E2t /2) ,  which causes the above-mentioned dif- 
ference. 

The scaling behavior (32) for small wavelengths implies a scaling 
behavior for the probability that a particle has moved a large distance 
without being trapped: 

P(r ,  t) ~ R ( t )  . ~ )  (37) 

with the scaling function 

1 { ( 1 - 1 y j ) c o s ( z c y ) + - s i n ( ~ J y l ) ,  - l ~ < y ~ l  
F ( y )  = 

0, else 
(38) 

and correlation length 

~(t) = \~ 1 - - i - ~ J  (39) 

This scaling function is plotted in Fig. 1. 
It shows that the probability of survival gets smaller if the particle has 

moved further from its starting point. As a consequence, particles which 
have escaped trapping have performed a random walk of characteristic 
range ~(t). Since ~(t)~ t~ /3~ t ~/2, these are rattier compact walks. The time 
dependence of d says that for longer and longer times, the dominant num- 
ber of nontrapped particles is to be found in larger and larger trap-free 
regions. For Jr] <(( t ) ,  particles have diffused in such a region without 
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Fig. 1. The scaling function F(y) entering the long-time and large-distance scaling form of 
P(r, t) of Eq. (37). 

reaching a trap; for Irl > ~(t), they must have passed a trap and the 
probability of survival is zero to leading order (it is exactly zero for perfect 
traps). By integrating (37), one recovers the survival probability (36), as 
one should, up to a factor 1 - 2/(3x). The origin of the discrepancy lies in 
our omission of subleading corrections to (37), (38). 

4. PERFECT VERSUS IMPERFECT TRAPPING 

From Eqs. (34) and (36) it is seen that the strength of traps only 
enters the dominant long-time decay through the factor f~.  Indeed, the 
only assumption made there is that with probability p a site contains no 
trap. In the exactly solvable case 

2Mxr 
v r - (40) 

"C 

with xr distributed according to (27), one studies a system where a fraction 
1 - p  of the sites contains an imperfect trap, with strength drawn from an 
exponential distribution. For  this system )co follows by solution of the 
second-order differential equation (29). A plot offo as a function of M was 
given in Fig. 2 of ref. 8. In the limit M--* oo all traps become perfect, and 
f ( x ) - -  1 solves (29), implying fo = 1 for perfect traps. 

As discussed in refs. 8 and 9, the factor)Co can be defined for arbitrary 
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distributions of disorder. Of particular interest is the case where the traps 
are identical 

O(v)=p6(v)+(1-p)c~ v - ~  (41) 

This distribution says that the trapping strength at a given site equals zero 
with probability p, and with probability 1 - p  it equals a/(2r). The 
philosophy of ref. 9 was to solve the Dyson-Schmidt equation (13) at the 
band edge. For our case we need the Schmidt function 

Z(u) = rlimo~ {Prob ( b ( r )  \b(r+l)>u)} (42) 

at E = 0 .  From Eq. (5) for b(r) it follows that at E = 0  the function Z(u) 
satisfies the Dyson-Schmidt equation 

Z(u)=pZ (2 -~ )  + (1-p) Z (2 + a -~)  + O(-u) (43) 

where O is a Heaviside step function. With the substitution 

1 
u = l - -  

t) 

the handier form 

Z ( 1 - ! ) - P Z ( 1 - v l I ) = ( 1 - P ) O ( I + ~ - v ) Z ( 1  + a - - -  

(44) 

V - -  

(45) 

can be derived for v>  1. In the region v>  1 + 1/a the solution of this 
equation has the form 

=- p~ - P f ~e 2~i~v (46) 
p . . . .  In p + 2z~in 

where P(v) is a periodic function with unit period. The second equality 
defines the coefficients fn of the Lifshitz band tail. ~8~ Since Eq. (45) cannot 
be solved exactly, we study the physically interesting case p - 1 of a small 
amount of traps. For p = 1 one has the solution 

822/59/1-2-5 
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This says that for p = 1 there is only one chain in the ensemble, for which 
b(r)/b(r + 1)= 1 at E =  0. For small concentrations 1 - p  of traps, Eq. (47) 
may be inserted in the rhs of (45). Solving this equation, we obtain 

Z(1) (l _! ) = {1, O<v<l+l /a  (48) 
pE~- ~/~?, v >~ 1 + 1/a 

where Ix] denotes the integer part of x. From (48) and (46) we obtain 

f(ol) = p - 1/a (49) 

For perfect traps (a = or) this reduces to fo = 1, as it should. For finite a, 
f(o 1) is larger than unity, indicating that imperfect trapping leads to a larger 
survival probability than perfect trapping. Furthermore, also in the limit 
p ~ 1 of small trap concentrations, f(o 1) goes to unity. This is to be expected 
too: on the time scales considered, repeated visits to imperfect traps let 
them look perfect. In the limit of vanishing trap strengths (a-~ 0) the 
expression (49) diverges. This indicates that the stretched exponential 
decay becomes meaningless. Indeed, no particle gets trapped in this limit. 

A better approximation for fo is obtained by inserting (48) in the rhs 
of (45) and iterating again. The result is 

k 

where 

1 ) 1 1 
a - 2  l + - + k - v  ---- 2"; k "=" a a 

The prime indicates that the sum is limited to the range 

1 1 
O < v - - - l < k ~ v  1 

From Eq. (50) one gets the approximation 

f ( oZ )=p- l / a ( l_p )  ~ p,+B, (51) 
n = 0  

with 

( B , = a  z n + l +  
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3 
O 

0.0 

p=0.7 

O,B 0.4 0.8 0.8 

a/(a + I) 

I 

1.0 

Fig. 2. Convergence of our iteration procedure for calculating fo:  (a) f(ol); (b) f~0*'); 
(c) f(o7) _~ f(0 ~~ . 

This second approximation has the same qualitative behavior as f(o 1). 
Further approximants can be evaluated numerically. In Fig. 2 we compare 

f(01), f(o 2), and f(o v) ---f(o ~176 for p = 0 . 7  as functions of the variable a/(a+ 1). 
The convergence of the algorithm has also been checked by comparing 
with data for f0 obtained by enumerating all possible random chains with 
length 16. This very precise method was used earlier (s) for harmonic 
systems. In the present case it fully confirms the results described above. 
In Fig. 3 we finally present plots of the quantity fo/p ~ as a function of 
the parameter a/(a + 1) for various values of p, where g(a) is defined in 
Eq. (79). 

5. A B S O R P T I O N  A N D  REFLECTION 

Weiss and Havlin (7) have introduced an interesting variant of the trap- 
ping problem. Particles are assumed to move at discrete times. If they hit 
a trap, they disappear with probability e (0 ~< e ~< 1) and are reflected to 
their position with the probability 1 - a .  For a = 1 this reduces to the 
model of perfect trapping. The main interest in the model is that it can be 
solved exactly. The reason is that particles will never leave the trap-free 
interval where they start. Our motivation to redo the calculations of Weiss 
and Havlin comes from the fact that these authors find no change in the 
long-time survival probability when traps become imperfect. We shall show 
that this unphysical prediction is incorrect. 
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Fig. 3. 
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The coefficient f0 for (a) p=0.5; (b) p=0.7; (c) p=0.9; (d) p=0.95. A division by 
pe has been made for reasons of graphical presentation. 

1 6  

*~ 1.4 
N. 

o 

Away from the traps the r andom walk satisfies the master  equat ion 

Pn+ 1( r I ro) = �89 + 11 ro) + �89 i I ro) (52) 

Here we have taken units in which z = 1. We first consider an interval 
having traps at sites r = 0 and r = L and having no traps for 1 ~< r ~< L - 1. 
This interval occurs with probabil i ty (1 _p)2 pL--1 (L >1 2). The solution of 
(52) vanishing at r = 0 and r = L and satisfying po(rq ro) = at, to is 

p.(rlro)=-s .= s,n ~ - E )  sin (53) 

Weiss and Havlin assume that  the starting points  are divided uniformly 
along the chain, but  do not  allow particles to start at t rapping sites, The 
probabil i ty that  in our  interval a given particle has not  hit a t rap after n 
steps is 

1 L - - I  L - - I  

S , = L _  I Z Z p,(rlro), S o = l  
r o = l  r = l  

:2 tL/2- ii ~ ( 2 j +  ~ ( 2 j +  1) 
_ ~ cos ~ 1) cot2 (54) 

L(L-1 )  j=o L 2L 
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where again Ix ]  denotes the integer part of x. From Sn follows the 
probability s, that a given particle hits a trap at the nth step as 

1 L - - I  

s,, 2 ( L - l )  ~ {Pn-~(llr~176 
r o =  I 

= S n _ l - - S  n ( 5 5 )  

for n ~> 1 and we define So = 0. The second equality follows from (52). We 
also need the probability Tn that a particle which starts next to a trap (that 
is, at r =  1 or r = L - 1 )  did not hit a trap after n steps: 

L - - 1  L - - 1  

T~=~ ~ [p~(rll)+p.(rfL-1)]= ~ pn(r[1) 
r=l r~l 

4 EL/2 11 ~(2j+ 1) ~(2j+ 1 (56) 
= Z  ~ cos" L c~ 2L 

j =  0 

Of course T o = 1. Finally, the probability that a particle hits for the first 
time a trap at the nth step, given that it was next to a trap at time n = 0, 
is 

1 l ( 1 [ 1 ) + 1  tn= ~p._ ~p._ ~(L-- 1] 1) 

= T .  I - T . ;  to=O (57) 

The probability for surviving j visits to a trap is 

Fj=(1-~)J (58) 

With these quantities the probability for survival after having made the nth 
step can be expressed as 

t2n=S,,+FI ~ sjT,_j+F2 ~ ~ sjtz_jT~_t+F3 
j=O / = O j = O  

l 

X ~ ~ E S j t l_ j t k_ lTn_k+ .. .  
k=O l=O j=O 

(59) 

The first term describes particles which did not hit a trap; the second 
describes random walkers which hit a trap on the j t h  step without being 
absorbed; in the third term two visits to a trap have been made, etc. 
Further terms describe random walks which have made repeated visits to 
the traps without being absorbed. We introduce the generating function 
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Q ( z ) = ~ , ~ o  Y2,z" and similarly for S(z), s(z), T(z), and t(z). Further, we 
define 

r(z) = ~ F , z" - '  (60) 
n = l  

From this it follows that 

Y2(z) = S(z) + s(z) . T(z) . F(t(z)) (61) 

Equations (55) and (57) become 

and 

s(z) = 1 - (1 - z )  S(z )  

t(z) = 1 - ( 1  - z )  T(z) 
(62) 

r(t(z)) : 1 + ~(1 - z )  T(z) ~ = (63) 

Inserting this into (61), one gets the final result for the generating function 
of the survival probability for a particle in an interval with L -  1 trap-free 
sites, 

S(z)  + ~T(z)  
(2(z) = (64) 

l+~(1-z) r(z) 

We are interested in the dominant long-time behavior of ~n. Hence we can 
set j =  0 in (54) and (56). The dominant behavior is 

8L 1 4 1 
S ( z ) -  2 ( L _ l ) l _ z  p, T(z) L l - z p  (65) 

where 

p =cos  - (66) 
L 

The leading singularity of (2(z) is found to be 

~2(z)= ~ - 5 - - +  1 + ( 1 - z p ' )  (67) 
L - 1  

where 

(68) 
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Hence the leading long-time survival probability for a particle starting in 
the interval under consideration is 

L 

This result has to be averaged over the interval lengths L with weight 
(1 _p)2 pL-1. At time zero each nontrapping site contains a particle. Hence 
our interval initially has L -  1 particles and the survival probability is 
given by 

gin= ~ (1-p)2p L I(L-1)g?.(L) ~ ( 1 -p )gpr - ' (L -1 )  (70) 
L = 2  L = 2  

Apart from exponentially small terms in n (generated, e.g., by the Euler- 
Maclaurin summation formula), the sum in the nominator may be replaced 
by an integral. One needs the asymptotic behavior for large L and n, 

~- ,K2H 

~ " ~ L - 1 1  [ ~ - s L + 4 y ( 1 - 8 ) + O ( L - - 1 ) ] e x p [ _ - ~ L - 5 + h ( L ) ]  (71) 

where 

2 r/ //TC 4 2 2 \ n h(L) = 27~ -s ~'-~ + 87 ~ ) -s + O(nL s) (72) 

This results in the expression 

- dL 75L+47  1 -  

x exp [ - ~ 7 +  h(L)] (73) --~L 

Performing the integral by saddle point methods, we obtain the final 
expression 

( l - p  ~2 8 (2x3~ 1/2 -3x/2 

17 (7c7) 2 ?2 10-- +8;;2 - + O ( x  -2) (74) 
x 1+ 18 12 2- x 

where 

V - 2 = - In p (75) 
1 - - 0 {  
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This result can be compared with the expression (36) for the case where 
traps do not reflect particles. First, (74) has an extra factor lip. This 
increase of survival probability is due to different initial conditions. Indeed, 
in Section 3 we allow particles to start at trapping sites. However, these 
particles surely get trapped on the time scale considered. Hence they do not 
contribute to the number of surviving particles, and their initial presence 
lowers the probability of survival by the factor p. Second, the role of fo in 
(36) is played by 

f o = p  ~1-~)/~, (76) 

As expected from previous section, fo goes to unity in the limit ~ ~ 1 or 
perfect trapping and in the limit p ~ 1 of a small fraction of traps. We can 
also check (76) in the limit p ~ 0. The idea is to consider the system of 
previous sections with imperfect, nonreflecting traps. For small p, a large, 
trap-free region will mainly lie in a sea of trapping sites. Particles which 
enter the left or the right trapping region will either be absorbed by a trap 
or escape and come back to the same trap-free region. On the time scale 
that we are interested in, this mechanism can be described by effective traps 
at the endpoints of the trap-free regions that either absorb or reflect par- 
ticles. In order to calculate the effective reflection rate, we have to solve the 
master equation (3) for the case Vr = a/(2~) for - - ~  ~< r <~ 0 and v, = 0 else. 
For r ~< 0 we can set the time derivative equal to zero, and find 

where 

p(r)=p(1)e -~(1-r) (r<~O) (77) 

o(  )1j2 
e - U = l + ~ -  a +  (78) 

In particular, it follows that p(O)=p(1)e ~. This has to be inserted in 
Eq. (3) for r =  1, from which it is seen that e - "  plays the role of the 
reflection coefficient 1 -  e. Combining (78) and (76), we find 

1 f o = p  ~, ~ = ~  ( p ~ 0 )  (79) 

The very same result was derived in refs. 8 and 9 for binary harmonic 
chains with masses taking the values 1 or M; according to (24), M should 
be identified with 1 + a/4. The approach in refs. 8 and 9 involved analysis 
of the Dyson-Schmidt equation. We conclude that (76) is confirmed in the 
limit p ~ 0 through an analogy with results for nonreflecting imperfect 
traps. 
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We can now compare our calculations with those of Weiss and 
Havlin. (7~ First, they inserted a factor L instead of L - 1  in Eq. (70). 
Second, the asymptotic expressions for S(z) and T(z) deviate from (65). 
However, these effects do not change the leading behavior of Tn- Weiss 
and Havlin made a continuum approximation, where it is assumed that p 
is close to unity, and changed the sum over L into an integral in a way dif- 
ferent from ours. This replaces our prefactor [(1 -p) / (p  in p)]2 in (74) by 
unity, which is exact for p = 1. The main point, however, is that the correc- 
tion h(L) of (71) was omitted. Indeed, its leading saddle point value 
2;~z2n/L 3 equals 272 and brings the prefactorf~=p -2~" when traps are not 
perfect. Weiss and Havlin made the approximation p'=p in (68) and 
therefore missed this factor. This led them to the conclusion that the long- 
time survival probability remains unchanged when traps become imperfect. 
Our result (74), however, has a large prefactor p2-2/~ when c~ is small. 
Since the survival probability cannot exceed unity, this means that for 
smaller and smaller trapping rate ~ the stretched exponential decay sets in 
at later and later times. 

6. S U M M A R Y  

In the present paper we have performed a detailed analysis of a system 
where particles perform a random walk on discrete sites of a line, where a 
fraction 1 - p  of sites contains an imperfect trap. Our main interest is the 
long-time behavior of the return and survival probability. To obtain these 
quantities, we used results by Nieuwenhuizen and Luck ~8'9~ on Lifshitz tails 
in the spectral density of harmonic chains with random masses. This leads, 
e.g., to a scaling form for the probability of displacement over a long dis- 
tance for long times. It is shown that, if traps are not perfect, there is an 
enhancement factor f2  in the long-time survival and return probability. 
This factor has been calculated for the case that trapping strengths are 
drawn from an exponential distribution (see ref. 8, Fig. 2). In the present 
work it is determined for identical imperfect traps. 

We also consider a model where particles are either absorbed or 
reflected by traps. It was introduced by Weiss and Havlin (7) and is exactly 
solvable. In contradiction to these authors, we again find an enhancement 
of the survival probability when traps are not perfect. We argue that for a 
small fraction of trap-free sites, the long-time survival probability of this 
and of the previous system should become equivalent. This is indeed con- 
firmed by our calculations. 

We wish to stress that only in the one-dimensional situation does the 
effect of imperfect trapping on the long-time survival probability show up 
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as a simple prefactor. In dimensions larger than two, particles may never 
return to a trap that has been visited. Indeed, the escape probability enters 
the result derived for a three-dimensional simple cubic lattice with a small 
concentration with imperfect traps. (6) It seems that the two-dimensional 
case is the most subtle one; results on this problem would be most 
welcome. 
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